Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Current Pharmacogenomics and Personalized Medicine ; 19(1):1, 2022.
Article in English | EMBASE | ID: covidwho-20233691
2.
Delineating Health and Health System: Mechanistic Insights into Covid 19 Complications ; : 289-298, 2021.
Article in English | Scopus | ID: covidwho-2326195

ABSTRACT

One of the hallmarks of the global pandemic of coronavirus disease 2019 (COVID-19) is that it targets the immune system by producing inflammatory cytokines. COVID-19 has expedited investigations on numerous therapeutics to fight the disease-causing virus SARS-CoV-2, some without well-established safety or efficacy data. The severity of the disease depends on a number of factors, including genetic background and preexisting conditions. The difference in the genetic makeup makes everyone unique and the understanding of the COVID-19 cure arduous. To dampen these inflammatory markers and to understand the viral disease dynamics, accounting for genetic variability, a combinational three-way approach involving bioinformatics, nutrigenomics, and pharmacogenomics will give answers to many unanswered questions involving patient care. A futuristic approach to prevention and cure calls for continuous research with practice and training provision to the right group, accompanied with the awareness enhancing its utility. © The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2021.

3.
Per Med ; 20(1): 1-3, 2023 01.
Article in English | MEDLINE | ID: covidwho-2309122
4.
Advancing Global Bioethics ; 19:83-124, 2023.
Article in English | Scopus | ID: covidwho-2303143

ABSTRACT

Precision Medicine (PM) is anticipated to have significant impact on individual health, public health and global health. With advances in sequencing technology, PM is anticipated to have the capacity of predicting health risks and outcomes and improve population health by using genomics and big data, with the aim to provide the right intervention to the right population at the right time – with the goal of improving health for all. In terms of global health, genomics will play a significant role in the prevention and treatment of emerging and reemerging infectious diseases, and prevention and containment of acute and chronic epidemics, and even global pandemics (influenza, tuberculosis, HIV, and COVID-19). Predicting the response to drug treatments, increasing efficacy and avoiding ADRs in public health is also a positive role of PM. However, opponents are worried about the ethical and social concerns, such as the fear of raising the 10/90 gap between developed and developing countries due to PM. With the goal of looking at PM in public health and global health genomics, this chapter will focus on the relevance of PM in the developed and developing countries, while discussing the anticipated ethical and social issues with recommendations to address the concerns. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

5.
Advancing Global Bioethics ; 19:55-82, 2023.
Article in English | Scopus | ID: covidwho-2303142

ABSTRACT

Precision medicine (PM) in the form of Pharmacogenomics (PGx) promises the use of diagnostic testing to provide the best clinical decisions based on a patient's genetic profile, by analyzing the coding and structural variants in a patient's genome to provide information about the causes of existing conditions, future risks for disease, and responsiveness to drugs. PM's major future goals include preventing premature deaths, reduction of healthcare cost, and better prevention and management of emerging infectious diseases (EIDs), non-communicable diseases (NCDs), and management of pandemics, and development of vaccines – locally as well as globally. With the raging COVID-19 pandemic, PM is also expected to play a critical role in addressing the "emergence and reemergence” of new and more virulent pathogen infectious diseases, which remain a challenge as of today – killing several millions of people each year globally. Despite all these advantages, it will be difficult to navigate through the challenges and the ethical and social issues that are anticipated to arise for the clinical practice, public health, and policy making in the era of PM. This chapter looks at the importance of PM in infectious diseases and NCDs, and pandemics – while identifying and addressing some of the anticipated challenges. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

6.
Front Genet ; 13: 1028081, 2022.
Article in English | MEDLINE | ID: covidwho-2260364

ABSTRACT

Background: Development and worldwide availability of safe and effective vaccines against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) to fight severe symptoms of coronavirus disease 2019 (COVID-19) and block the pandemic have been a great achievement and stimulated researchers on understanding the efficacy and duration of different vaccine types. Methods: We investigated the levels of anti-SARS-CoV-2 antibodies (IgG) and neutralizing antibodies (NAbs) in 195 healthy adult subjects belonging to the staff of the University-Hospital of Ferrara (Italy) starting from 15 days up to 190 days (about 6 months) after the second dose of the BNT162b2 (Pfizer-BioNTech) mRNA-based vaccine (n = 128) or ChAdOx1 (AstraZeneca) adenovirus-based vaccine (n = 67) using a combined approach of serological and genomics investigations. Results: A strong correlation between IgG and NAb levels was detected during the 190 days of follow-up (r 2 = 0.807; p < 0.0001) and was confirmed during the first 90 days (T1) after vaccination (r 2 = 0.789; p = 0.0001) and 91-190 days (T2) after vaccination (r 2 = 0.764; p = 0.0001) for both vaccine types (r 2 = 0.842; p = 0.0001 and r 2 = 0.780; p = 0.0001 for mRNA- and adenovirus-based vaccine, respectively). In addition to age (p < 0.01), sex (p = 0.03), and type of vaccine (p < 0.0001), which partially accounted for the remarkable individual differences observed in the antibody levels and dynamics, interesting genetic determinants appeared as significant modifiers of both IgG and NAb responses among the selected genes investigated (TP53, rs1042522; APOE, rs7412/rs429358; ABO, rs657152; ACE2, rs2285666; HLA-A rs2571381/rs2499; CRP, rs2808635/rs876538; LZTFL1, rs35044562; OAS3, rs10735079; SLC6A20, rs11385942; CFH, rs1061170; and ACE1, ins/del, rs4646994). In detail, regression analysis and mean antibody level comparison yielded appreciable differences after genotype stratification (P1 and P2, respectively, for IgG and NAb distribution) in the whole cohort and/or in the mRNA-based vaccine in the following genes: TP53, rs1042522 (P1 = 0.03; P2 = 0.04); ABO, rs657152 (P1 = 0.01; P2 = 0.03); APOE, rs7412/rs429358 (P1 = 0.0018; P2 = 0.0002); ACE2, rs2285666 (P1 = 0.014; P2 = 0.009); HLA-A, rs2571381/rs2499 (P1 = 0.02; P2 = 0.03); and CRP, rs2808635/rs876538 (P1 = 0.01 and P2 = 0.09). Conclusion: High- or low-responsive subjects can be identified among healthy adult vaccinated subjects after targeted genetic screening. This suggests that favorable genetic backgrounds may support the progression of an effective vaccine-induced immune response, though no definite conclusions can be drawn on the real effectiveness ascribed to a specific vaccine or to the different extent of a genotype-driven humoral response. The interplay between data from the polygenic predictive markers and serological screening stratified by demogeographic information can help to recognize the individual humoral response, accounting for ethnic and geographical differences, in both COVID-19 and anti-SARS-CoV-2 vaccinations.

7.
Advances in Molecular Pathology Volume 5 ; Advances in Molecular Pathology. 5(1):xvii, 2022.
Article in English | EMBASE | ID: covidwho-2236418
8.
Letters in Drug Design and Discovery ; 20(3):264-278, 2023.
Article in English | Scopus | ID: covidwho-2231723

ABSTRACT

Background: Even with the massive increase in financial investments in pharmaceutical research over the last decade, the number of new drugs approved has plummeted. As a result, finding new uses for approved pharmaceuticals has become a prominent alternative approach for the pharmaceutical industry. Objective: Drug repurposing or repositioning is a game-changing development in the field of drug research that entails discovering additional uses for previously approved drugs. Methods: In comparison to traditional drug discovery methods, drug repositioning enhances the preclini-cal steps of creating innovative medications by reducing the cost and time of the process. Drug reposition-ing depends heavily on available drug-disease data, so the fast development of available data as well as developed computing skills has resulted in the boosting of various new drug repositioning methods. The main goal of this article is to describe these different methods and approaches for drug repurposing. Results: The article describes the basic concept of drug repurposing, its significance in discovering new medications for various disorders, drug repurposing approaches such as computational and experimental approaches, and previous as well as recent applications of drug repurposing in diseases such as cancer, COVID-19, and orphan diseases. Conclusion: The review also addresses obstacles in drug development using drug repurposing strategies, such as a lack of financing and regulatory concerns and concludes with outlining recommendations for overcoming these challenges. © 2023 Bentham Science Publishers.

9.
J Int Med Res ; 51(1): 3000605231153764, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2223990

ABSTRACT

By the end of 2022, there had been a reduction in new cases and deaths caused by coronavirus disease 2019 (COVID-19). At the same time, new variants of the severe acute respiratory syndrome coronavirus 2 virus were being discovered. Critically ill patients with COVID-19 have been found to have high serum levels of proinflammatory cytokines, especially interleukin (IL)-6. COVID-19-related mortality has been attributed in most cases to the cytokine storm caused by increased levels of inflammatory cytokines. Dexamethasone in low doses and immunomodulators such as IL-6 inhibitors are recommended to overcome the cytokine storm. This current narrative review highlights the place of other therapeutic choices such as proteasome inhibitors, protease inhibitors and nuclear factor kappa B inhibitors in the treatment of patients with COVID-19.


Subject(s)
COVID-19 , Humans , Cytokine Release Syndrome/drug therapy , Pharmacogenetics , SARS-CoV-2 , Cytokines , Interleukin-6
10.
Int J Mol Sci ; 23(23)2022 Dec 06.
Article in English | MEDLINE | ID: covidwho-2163437

ABSTRACT

Symptom treatments for Coronavirus disease 2019 (COVID-19) infection and Long COVID are one of the most critical issues of the pandemic era. In light of the lack of standardized medications for treating COVID-19 symptoms, traditional Chinese medicine (TCM) has emerged as a potentially viable strategy based on numerous studies and clinical manifestations. Taiwan Chingguan Yihau (NRICM101), a TCM designed based on a medicinal formula with a long history of almost 500 years, has demonstrated its antiviral properties through clinical studies, yet the pharmacogenomic knowledge for this formula remains unclear. The molecular mechanism of NRICM101 was systematically analyzed by using exploratory bioinformatics and pharmacodynamics (PD) approaches. Results showed that there were 434 common interactions found between NRICM101 and COVID-19 related genes/proteins. For the network pharmacology of the NRICM101, the 434 common interacting genes/proteins had the highest associations with the interleukin (IL)-17 signaling pathway in the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Moreover, the tumor necrosis factor (TNF) was found to have the highest association with the 30 most frequently curated NRICM101 chemicals. Disease analyses also revealed that the most relevant diseases with COVID-19 infections were pathology, followed by cancer, digestive system disease, and cardiovascular disease. The 30 most frequently curated human genes and 2 microRNAs identified in this study could also be used as molecular biomarkers or therapeutic options for COVID-19 treatments. In addition, dose-response profiles of NRICM101 doses and IL-6 or TNF-α expressions in cell cultures of murine alveolar macrophages were constructed to provide pharmacodynamic (PD) information of NRICM101. The prevalent use of NRICM101 for standardized treatments to attenuate common residual syndromes or chronic sequelae of COVID-19 were also revealed for post-pandemic future.


Subject(s)
COVID-19 , Drugs, Chinese Herbal , Humans , Animals , Mice , Post-Acute COVID-19 Syndrome , COVID-19 Drug Treatment , Network Pharmacology , Medicine, Chinese Traditional , Tumor Necrosis Factor-alpha , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Molecular Docking Simulation
11.
OMICS ; 26(11): 583-585, 2022 11.
Article in English | MEDLINE | ID: covidwho-2087720

ABSTRACT

The current pandemic has markedly shifted the focus of the global research and development ecosystem toward infectious agents such as SARS-CoV-2, the causative agent for COVID-19. A case in point is the chronic liver disease associated with hepatitis B virus (HBV) infection that continues to be a leading cause of severe liver disease and death globally. The burden of HBV infection is highest in the World Health Organization designated western Pacific and Africa regions. Tenofovir disoproxil fumarate (TDF) is a nucleoside analogue used in treatment of HBV infection but carries a potential for kidney toxicity. TDF is not metabolized by the cytochrome P450 enzymes and, therefore, its clearance in the proximal tubule of the renal nephron is controlled mostly by membrane transport proteins. Clinical pharmacogenomics of TDF with a focus on drug transporters, discussed in this perspective article, offers a timely example where resource-limited countries and regions of the world with high prevalence of HBV can strengthen the collective efforts to fight both COVID-19 and liver diseases impacting public health. We argue that precision/personalized medicine is invaluable to guide this line of research inquiry. In all, our experience in Ghana tells us that it is important not to forget the burden of chronic diseases while advancing research on infectious diseases such as COVID-19. For the long game with COVID-19, we need to address the public health burden of infectious agents and chronic diseases in tandem.


Subject(s)
COVID-19 , Hepatitis B, Chronic , Hepatitis B , Humans , Tenofovir/adverse effects , Hepatitis B virus/genetics , Hepatitis B, Chronic/drug therapy , Pharmacogenetics , Ecosystem , Antiviral Agents/adverse effects , DNA, Viral/therapeutic use , SARS-CoV-2 , Hepatitis B/complications , Hepatitis B/genetics , Kidney , Ghana
12.
Pulm Pharmacol Ther ; 77: 102172, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2069610

ABSTRACT

COVID-19 medicines, such as molnupiravir are beginning to emerge for public health and clinical practice. On the other hand, drugs display marked variability in their efficacy and safety. Hence, COVID-19 medicines, as with all drugs, will be subject to the age-old maxim "one size prescription does not fit all". In this context, pharmacogenomics is the study of genome-by-drug interactions and offers insights on mechanisms of patient-to-patient and between-population variations in drug efficacy and safety. Pharmacogenomics information is crucial to tailoring the patients' prescriptions to achieve COVID-19 preventive and therapeutic interventions that take into account the host biology, patients' genome, and variable environmental exposures that collectively influence drug efficacy and safety. This expert review critically evaluates and summarizes the pharmacogenomics and personalized medicine aspects of the emerging COVID-19 drugs, and other selected drug interventions deployed to date. Here, we aim to sort out the hope, hype, and reality and suggest that there are veritable prospects to advance COVID-19 medicines for public health benefits, provided that pharmacogenomics is considered and implemented adequately. Pharmacogenomics is an integral part of rational and evidence-based medical practice. Scientists, health care professionals, pharmacists, pharmacovigilance practitioners, and importantly, patients stand to benefit by expanding the current pandemic response toolbox by the science of pharmacogenomics, and its applications in COVID-19 medicines and clinical trials.


Subject(s)
COVID-19 Drug Treatment , Pharmacogenetics , Humans , Precision Medicine , Pandemics
13.
Pharmaceutical Journal ; 309(7964), 2022.
Article in English | EMBASE | ID: covidwho-2065049
14.
Methods in Molecular Biology ; 2547:v-vii, 2022.
Article in English | EMBASE | ID: covidwho-2058651
15.
Front Pharmacol ; 13: 1013527, 2022.
Article in English | MEDLINE | ID: covidwho-2058893
16.
Pharmacy (Basel) ; 10(4)2022 Jun 28.
Article in English | MEDLINE | ID: covidwho-2023997

ABSTRACT

BACKGROUND: The utilization of pharmacogenomics in everyday practice has shown several notable benefits. Keeping in mind the rising trend of applicability of pharmacogenomics and personalized medicine, we sought to compare the attitudes of future healthcare workers in different branches of the healthcare system. METHODS: The present study was conducted as a questionnaire-based cross-sectional study in October of 2020. Students eligible to participate were all the students of the University of Split School of Medicine enrolled in the academic year 2020/2021. RESULTS: The number of students that participated in the study was 503. Students were most interested in clinical examples of pharmacogenomics (31.4%) and the benefits of pharmacogenomics in clinical practice (36.4%). Furthermore, 72.6% of all students agreed that they should be able, in their future practice, to identify patients that could benefit from genetic testing. CONCLUSION: At the present time, the lack of education and appropriate clinical guidelines appear to be the major barriers to the clinical application of pharmacogenomics, especially in Croatia. Hence, in order to support health care professionals' evidence-based therapeutic recommendations with patients' pharmacogenomic data, universities should offer more pharmacogenomics education in their curricula.

17.
Methods Mol Biol ; 2547: 187-199, 2022.
Article in English | MEDLINE | ID: covidwho-2013831

ABSTRACT

The SARS-CoV-2 virus has been the subject of intense pharmacological research. Various pharmacotherapeutic approaches including antiviral and immunotherapy are being explored. A pandemic, however, cannot depend on the development of new drugs; the time required for conventional drug discovery and development is far too lengthy. As such, repurposing drugs is being used as a viable approach for identifying pharmacological agents for COVID-19 infections. Evaluation of repurposed drug candidates with pharmacogenomic analysis is being used to identify near-term pharmacological remedies for COVID-19.


Subject(s)
COVID-19 Drug Treatment , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Drug Development , Drug Repositioning , Humans , Pharmacogenetics , SARS-CoV-2/genetics
18.
Pediatr Dermatol ; 39(4): 601-605, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-2001730

ABSTRACT

Toxic epidermal necrolysis (TEN) is a rare and acute life-threatening condition and one of the severe cutaneous adverse drug reactions. There are limited data on TEN from the COVID-19 vaccine regarding its pathogenesis, treatment, and prognosis, particularly in children. We report a case of COVID-19 vaccine-induced TEN and the patient's human leukocyte antigen pharmacogenomic profile.


Subject(s)
COVID-19 Vaccines , COVID-19 , Stevens-Johnson Syndrome , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Child , Humans , Pharmacogenomic Testing , Stevens-Johnson Syndrome/etiology , Stevens-Johnson Syndrome/genetics , Vaccination/adverse effects
19.
Natural Product Communications ; 17(7), 2022.
Article in English | EMBASE | ID: covidwho-1956964

ABSTRACT

Objective: The Chinese herbal formula Huo-Xiang-Zheng-Qi (HXZQ) is effective in preventing and treating coronavirus disease 19 (COVID-19) infection;however, its mechanism remains unclear. This study used network pharmacology and molecular docking techniques to investigate the mechanism of action of HXZQ in preventing and treating COVID-19. Methods: The Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) was used to search for the active ingredients and targets of the 10 traditional Chinese medicines (TCMs) of HXZQ prescription (HXZQP). GeneCards, Online Mendelian Inheritance in Man (OMIM), Pharmacogenomics Knowledge Base (PharmGKB), Therapeutic Target Database (TTD), and DrugBank databases were used to screen COVID-19-related genes and intersect them with the targets of HXZQP to obtain the drug efficacy targets. Cytoscape 3.8 software was used to construct the drug-active ingredient–target interaction network of HXZQP and perform protein–protein interaction (PPI) network construction and topology analysis. R software was used to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Finally, AutoDock Vina was utilized for molecular docking of the active ingredients of TCM and drug target proteins. Results: A total of 151 active ingredients and 250 HXZQP targets were identified. Among these, 136 active ingredients and 67 targets of HXZQP were found to be involved in the prevention and treatment of COVID-19. The core proteins identified in the PPI network were MAPK1, MAPK3, MAPK8, MAPK14, STAT3, and PTGS2. Using GO and KEGG pathway enrichment analysis, HXZQP was found to primarily participate in biological processes such as defense response to a virus, cellular response to biotic stimulus, response to lipopolysaccharide, PI3K-Akt signaling pathway, Th17 cell differentiation, HIF-1 signaling pathway, and other signaling pathways closely related to COVID-19. Molecular docking results reflected that the active ingredients of HXZQP have a reliable affinity toward EGFR, MAPK1, MAPK3, MAPK8, and STAT3 proteins. Conclusion: Our study elucidated the main targets and pathways of HXZQP in the prevention and treatment of COVID-19. The study findings provide a basis for further investigation of the pharmacological effects of HXZQP.

20.
Contemp Clin Trials ; 119: 106813, 2022 08.
Article in English | MEDLINE | ID: covidwho-1926262

ABSTRACT

RATIONALE AND OBJECTIVE: APOL1 risk alleles are associated with increased cardiovascular and chronic kidney disease (CKD) risk. It is unknown whether knowledge of APOL1 risk status motivates patients and providers to attain recommended blood pressure (BP) targets to reduce cardiovascular disease. STUDY DESIGN: Multicenter, pragmatic, randomized controlled clinical trial. SETTING AND PARTICIPANTS: 6650 individuals with African ancestry and hypertension from 13 health systems. INTERVENTION: APOL1 genotyping with clinical decision support (CDS) results are returned to participants and providers immediately (intervention) or at 6 months (control). A subset of participants are re-randomized to pharmacogenomic testing for relevant antihypertensive medications (pharmacogenomic sub-study). CDS alerts encourage appropriate CKD screening and antihypertensive agent use. OUTCOMES: Blood pressure and surveys are assessed at baseline, 3 and 6 months. The primary outcome is change in systolic BP from enrollment to 3 months in individuals with two APOL1 risk alleles. Secondary outcomes include new diagnoses of CKD, systolic blood pressure at 6 months, diastolic BP, and survey results. The pharmacogenomic sub-study will evaluate the relationship of pharmacogenomic genotype and change in systolic BP between baseline and 3 months. RESULTS: To date, the trial has enrolled 3423 participants. CONCLUSIONS: The effect of patient and provider knowledge of APOL1 genotype on systolic blood pressure has not been well-studied. GUARDD-US addresses whether blood pressure improves when patients and providers have this information. GUARDD-US provides a CDS framework for primary care and specialty clinics to incorporate APOL1 genetic risk and pharmacogenomic prescribing in the electronic health record. TRIAL REGISTRATION: ClinicalTrials.govNCT04191824.


Subject(s)
Hypertension , Renal Insufficiency, Chronic , Black or African American , Antihypertensive Agents , Apolipoprotein L1 , Blood Pressure , Genetic Testing , Humans , Pharmacogenetics
SELECTION OF CITATIONS
SEARCH DETAIL